Cell-specific effects through biochemical modifications
As the Bayreuth researchers have demonstrated, cell-specific effects of spider silk materials can be produced by functionally modifying silk proteins through the incorporation of peptides, which are short-chain polyamino acids. Peptides that interact with cells (cell-adhesive peptides) are present in the extracellular matrix (ECM) of natural tissues: This is a lattice-like molecular structure that fills the spaces between neighboring cells in a tissue and stabilizes their spatial arrangement. The Bayreuth researchers have grafted some cell-adhesive peptides found in the ECM of numerous organisms – including humans – into several variants of a silk protein derived from a spider silk of the garden cross spider. As a result of biochemical modification, some of these altered silk proteins were found to be generally cell-adhesive, while others generally exhibited cell-repellent behaviour. In some cases, however, cell-specific interactions were observed in addition. Particularly striking were the effects of the peptide KGD: it specifically promotes the attachment and growth of myoblasts. These are embryonic muscle precursor cells that can develop into muscle fibers.
"Our research results point to a novel pathway leading to cell-specific applications of materials made from spider silk – whether in the design of scaffolds to promote natural regenerative processes, in the coating of implants, or even in the 3D printing of hydrogels with encapsulated cells that can be further processed into functional materials," said Vanessa Trossmann M.Sc., lead author of the study published in Advanced Healthcare Materials.
Cell-specific effects through surface structuring of spider silk coatings
The study, published in Advanced Materials Interfaces, presents a different way to optimize spider silk materials. Coatings made from one silk protein derived directly from the silk of the garden spider do not exhibit cell-adhesive behavior on their own – without biochemical modification. The research team led by Prof. Dr. Thomas Scheibel has now used a lithographic process to structure the surface of these coatings in such a way as to specifically stimulate the attachment and growth of cells of a certain type. The reactions of different cells to the shape and size of the geometric structures imprinted in the surface depend strongly on the respective cell type, among other parameters, as extensive tests have shown. "Based on our research results, it will be possible to lithographically optimize coatings made of silk proteins or other biocompatible materials in such a way that they stimulate and drive the natural regeneration of complex tissue structures in a cell-specific manner," says Scheibel.
Publications:
Vanessa Tanja Trossmann, Thomas Scheibel: Design of Recombinant Spider Silk Proteins for Cell Type Specific Binding, Advanced Healthcare Materials 9/2023, https://doi.org/10.1002/adhm.202202660
Sarah Lentz, Vanessa Tanja Trossmann, Thomas Scheibel: Selective Topography Directed Cell Adhesion on Spider Silk Surfaces. Advanced Material Interfaces, 5/2023, https://doi.org/10.1002/admi.202201936