In Bayreuth, this is simplified by digitalisation: virtual battery modules are created based on the measurement of individual cells of the same type. The fluctuations from cell to cell are determined at the beginning of the service life. This results in a kind of "ideal-type battery module" taking statistical fluctuations into account. For quantitative and qualitative analysis, this is a novel comparative analysis approach. The characteristics of the cells connected in series are examined and compared with those of an unevenly aged interconnection. For the most promising traits, a detailed sensitivity analysis is performed, examining the influence of cell-to-cell variations, ageing conditions and ageing mechanism. The feature with the highest sensitivity, the so-called low-frequency minimum, is able to detect individual outliers within a large number of serially connected cells. This is the first time that inhomogeneities within a battery pack are specifically detected. Rüther summarises: "We have thus found a method to find out economically less costly than before whether a battery module has aged unevenly, which gives us new options for action when evaluating different recycling management options."
Gamechanger
"For the remanufacturing of battery modules or systems, e.g. from electromobility, and the further use of suitable cells or modules instead of scrapping them, condition assessment is an essential prerequisite. Corresponding analysis methods are therefore important door openers for value retention and further use," sums up Dr.-Ing. Bernd Rosemann, Academic Director at the Chair of Environmental Production Engineering and Project Manager of the BMBF project Redesign at the Bavarian Centre for Battery Technology (BayBatt) at the University of Bayreuth.
This sets Bayreuth's research apart from the other goals of the BMBF's greenBatt research cluster: these are primarily concerned with material recycling, i.e. the recovery of materials and substances from batteries and their return to the material cycle. The greenBatt team at BayBatt, however, is deliberately dedicated to remanufacturing, i.e. reprocessing at the parts or module level and thus making batteries that are supposedly at the end of their life usable again.
Publication: 1st processing in BMBF project GreenBattery, ReDesign 01.21-11.23., Current publication 19.12.22, Journal Paper: Applied Energy (https://doi.org/10.1016/j.apenergy.2022.120514), Rüther, T. (Corresponding Author), Plank, C., Schamel, M., Danzer, M. A.