Logo Universität Bayreuth

Universität Bayreuth, Pressemitteilung Nr. 002/2024, 11. Januar 2024

Ultrakurze Laserblitze nach Wunsch: Kontrollierbare Lichtpuls-Paare aus einem einzelnen Faserlaser

In einem innovativen Ansatz zur Steuerung ultrakurzer Laser-Blitze nutzen Forschende der Universitäten Bayreuth und Konstanz Solitonen-Physik und zwei Puls-Kämme innerhalb eines einzelnen Lasers. Das Verfahren hat das Potential Laseranwendungen stark zu beschleunigen und zusätzlich zu vereinfachen. Die Ergebnisse der Forschung wurde nun in Science Advances veröffentlicht. 

What for?

Das Timing in der Abfolge ultrakurzer Laserpulse ist entscheidend für eine Vielzahl an Laseranwendungen von der Materialanalyse bis hin zur Präzisionsbearbeitung. Die aktuelle Arbeit von Prof. Dr. Georg Herink und seiner Doktorandin Julia A. Lang von der Universität Bayreuth sowie ihren Kollegen von der Universität Konstanz demonstriert erstmalig ein neues Verfahren zur schnellen Erzeugung von Pulsfolgen mit frei abstimmbarem Timing auf Basis eines kompakten Faserlasers – und frei von jeder Mechanik. Die Ergebnisse sind wichtig für die Beschleunigung von Kurzpuls-basierten Mikroskopie- und Spektroskopieverfahren.

Illustration von zwei Solitonen (blau, rot), die in einem Erbium-Faserlaser umlaufen. Ein Soliton (rot) wird dabei durch einen akusto-optischen Modulation (AOM) gestört, womit das Timing zwischen den Pulsen kontrolliert werden kann.

Traditionell werden zeitliche Pulsabstände von Lasern dadurch eingestellt, dass jeder Puls in zwei Pulse aufgespalten und über unterschiedliche, mechanisch abstimmbare Wegstrecken verzögert wird. Alternativ nutzt man zwei Laserquellen mit leicht unterschiedlichen Umlaufzeiten („dual combs“), um aus der Überlagerung der beiden Puls-Kämme schnell durchlaufende Verzögerungen zu erzeugen. Das von Prof. Dr. Georg Herink, Leiter der Arbeitsgruppe „Experimentalphysik VIII - Ultraschnelle Dynamik“ an der Universität Bayreuth und seiner Doktorandin Julia A. Lang in Kooperation mit Prof. Dr. Alfred Leitenstorfer und Sarah R. Hutter von der Universität Konstanz demonstrierte, rein optische Verfahren basiert auf zwei Puls-Kämmen innerhalb eines einzelnen Lasers. Es ermöglicht dabei extrem schnell und flexibel einstellbare Pulsfolgen. Gleichzeitig kann dies in sehr kompakten, Glasfaser-basierten Lichtquellen umgesetzt werden. Indem die Forschenden die beiden Puls-Kämme außerhalb des Lasers zeitlich zusammenführen, erhalten sie Pulsmuster, die nach Belieben mit verschiedenen Verzögerungen eingestellt werden können.

Dabei nutzen die Forschenden einen Trick: Statt des üblicherweise einzelnen Lichtpulses zirkulieren hier zwei Pulse im Laser. „Zwischen beiden Pulsen bleibt gerade genug Zeit, um einen einzelnen Puls mithilfe eines schnellen optischen Schalters im Inneren des Lasers zu ‚stören‘“, erklärt Lang, Erstautorin der Studie. „Unter Ausnutzung der Laserdynamik bewirkt diese ,Intracavity-Modulation‘ eine Geschwindigkeitsänderung und verschiebt somit die beiden Pulse zeitlich gegeneinander.“

Die auf Glasfasern basierte Laserquelle wurde von Sarah R. Hutter und Alfred Leitenstorfer von der Universität Konstanz entwickelt und hergestellt. Dank einer besonderen Echtzeit-Messmethode können die Forschenden in Bayreuth nun genau beobachten, wie sich die kurzen Lichtpulse – sogenannte Solitonen – bewegen, wenn äußere Einflüsse auf sie wirken. Diese genutzte Echtzeit-Spektralinterferometrie erlaubt die präzise Vermessung des Abstands jedes Pulspaares – und das über 10 Millionen mal pro Sekunde. „Wir zeigen, dass wir das Timing über einen weiten Bereich extrem schnell einstellen und frei programmierbare Bewegungsformen erreichen können“, erläutert Herink. Die nun in Science Advances vorgestellte Forschung präsentiert einen innovativen Ansatz zur Steuerung von Solitonen und eröffnet neben neuen Einblicke in die Solitonenphysik Möglichkeiten für besonders schnelle und effiziente Anwendungen ultrakurzer Laserpulse.

Die Forschung ist Teil des von der DFG geförderten Projekts „Ultrakurze Lichtmoleküle - Von internen Interaktionen zu externer Kontrolle“.

Veröffentlichung:

Julia A. Lang et al. ,Controlling intracavity dual-comb soliton motion in a single-fiber laser.Sci. Adv.10, eadk2290(2024).DOI:10.1126/sciadv.adk2290


Prof. Dr. Georg Herink

Prof. Dr. Georg Herink

Ultraschnelle Dynamik

Tel: +49 (0)921 / 55-3161        
E-Mail: georg.herink@uni-bayreuth.de
Jennifer Opel

Jennifer Opel (im Mutterschutz / Elternzeit)Stellv. Pressesprecherin

Telefon: +49 (0)921 / 55-5357
E-Mail: jennifer.opel@uni-bayreuth.de