Your browser is outdated. We recommend an update or using another browser to visit our website.

Ihr Browser ist veraltet. Wir empfehlen Ihnen ein Update oder einen anderen Browser zum Besuch unserer Website.
 

Universität Bayreuth, Pressemitteilung Nr. 072/2022 vom 11.05.2022

Reisen zum Mittelpunkt des Uranus: Neues Verfahren ermöglicht erstmals Materialforschung im Terapascal-Bereich

Davon konnte Jules Verne nicht einmal träumen: Ein Forschungsteam der Universität Bayreuth hat gemeinsam mit internationalen Partnern die Grenzen der Hochdruck- und Hochtemperaturforschung in kosmische Dimensionen ausgeweitet. Erstmals ist es gelungen, Materialien unter Kompressionsdrücken von mehr als einem Terapascal (1.000 Gigapascal) zu erzeugen und zeitgleich zu analysieren. Solche extrem hohen Drücke herrschen beispielsweise im Mittelpunkt des Planeten Uranus, sie sind mehr als dreimal so hoch wie der Druck im Zentrum der Erde. In „Nature“ stellen die Forscher*innen das von ihnen entwickelte Verfahren zur Synthese und Strukturanalyse neuartiger Materialien vor.

Theoretische Modelle sagen sehr ungewöhnliche Strukturen und Eigenschaften von Materialien unter extremen Druck-Temperatur-Bedingungen voraus. Doch bisher ließen sich diese Vorhersagen nicht in Experimenten bei Kompressionsdrücken von mehr als 200 Gigapascal verifizieren. Zum einen sind komplexe technische Voraussetzungen nötig, um Materialproben derart extremen Drücken auszusetzen, zum anderen fehlten ausgereifte Methoden für zeitgleiche störungsfreie Strukturanalysen. Die in „Nature“ veröffentlichten Experimente eröffnen daher völlig neue Dimensionen für die Hochdruckkristallographie: Im Labor können jetzt Materialien erzeugt und erforscht werden, die – wenn überhaupt – in den Weiten des Universums nur unter extrem hohen Drücken existieren.

Strukturen und Eigenschaften von Materialien bei extrem hohen Drücken und Temperaturen sind immer noch weitgehend “terra incognita”. Prof. Leonid Dubrovinsky und seine Forschungspartner verwenden eine von ihnen konstruierte laserbeheizte zweistufige Diamantstempelzelle für die Synthese von Materialien im Terapascal-Bereich (1000 Gigapascal). Für die zeitgleiche strukturelle Charakterisierung der Materialien wird die In-situ-Einzelkristall-Röntgenbeugung genutzt.

„Das von uns entwickelte Verfahren versetzt uns erstmals in die Lage, neue Materialstrukturen im Terapascal-Bereich zu synthetisieren und in situ – das heißt: noch während des laufenden Experiments – zu analysieren. Auf diese Weise lernen wir bisher unbekannte Zustände, Eigenschaften und Strukturen von Kristallen kennen und können generell unser Verständnis von Materie bedeutend vertiefen. Für die Erforschung terrestrischer Planeten und die Synthese von Funktionsmaterialien, die in innovativen Technologien zur Anwendung kommen, lassen sich dadurch wertvolle Einsichten gewinnen“, erklärt Prof. Dr. Dr. h.c. Leonid Dubrovinsky vom Bayerischen Geoinstitut (BGI) der Universität Bayreuth, der Erstautor der Veröffentlichung.

In ihrer neuen Studie zeigen die Forscher*innen, wie sie mit Hilfe des jetzt entdeckten Verfahrens neuartige Rheniumverbindungen erzeugt und in situ sichtbar gemacht haben. Es handelt sich dabei um ein neuartiges Rhenium-Nitrid (Re₇N₃) und eine Rhenium-Stickstoff-Legierung. In einer mit Laserstrahlen beheizten zweistufigen Diamantstempelzelle wurden diese Materialien unter extremen Drücken synthetisiert. Die Synchrotron-Einkristall-Röntgenbeugung ermöglichte eine vollständige chemische und strukturelle Charakterisierung. „Vor zweieinhalb Jahren waren wir in Bayreuth sehr überrascht, als wir auf der Basis von Rhenium und Stickstoff einen superharten metallischen Leiter herstellen konnten, der selbst extrem hohen Drücken standhält. Wenn wir künftig die Hochdruckkristallographie sogar im Terapascal-Bereich anwenden, werden wir in dieser Richtung möglicherweise weitere überraschende Entdeckungen machen. Die Türen für eine kreative Materialforschung, die unter extremen Drücken unerwartete Strukturen erzeugt und sichtbar macht, stehen jetzt weit offen“, sagt die Hauptautorin der Studie, Prof. Dr. Dr. h.c. Natalia Dubrovinskaia vom Labor für Kristallographie der Universität Bayreuth.

An den in „Nature“ veröffentlichten Forschungsarbeiten waren zusammen mit dem Bayerischen Geoinstitut (BGI) und dem Labor für Kristallographie der Universität Bayreuth zahlreiche weitere Forschungspartner beteiligt: die Universität zu Köln, die Universität Linköping, das Deutsche Elektronen-Synchrotron DESY in Hamburg, die European Synchrotron Radiation Facility in Grenoble sowie das Center for Advanced Radiation Sources an der Universität Chicago.

Veröffentlichung:
Leonid Dubrovinsky et al.: Materials synthesis at terapascal static pressures. Nature (2022), DOI: 10.1038/s41586-022-04550-2 // https://www.nature.com/articles/s41586-022-04550-2

Prof. Dr. Natalia Dubrovinskaia

Prof. Dr. Dr. h.c. Natalia Dubrovinskaia

Materialphysik und Technologie unter extremen Bedingungen
Labor für Kristallographie

Universität Bayreuth
Telefon: +49 (0)921 / 55-3880
E-Mail: natalia.dubrovinskaia@uni-bayreuth.de

Profil von Prof. Dr. Leonid Dubrovinsky

Prof. Dr. Dr. h.c. Leonid Dubrovinsky

Akademischer Direktor
Bayerisches Geoinstitut (BGI)

Universität Bayreuth
Telefon: +49 (0)921 / 55-3736 or -3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler, Wissenschaftskommunikation

Christian Wißler

Stellv. Pressesprecher, Wissenschaftskommunikation
Universität Bayreuth

Telefon: +49 (0)921 / 55-5356
E-Mail: christian.wissler@uni-bayreuth.de